Deactivation and Decommissioning Focus Area Mid-Year Review Meeting Federal Energy Technology Center

Diamond Wire Cutting
Technology Assessment
of
Tokamak Fusion Test Reactor
Vacuum Vessel Surrogate

Keith Rule
Princeton Plasma Physics Laboratory

Project Organization

Steve Bossart FETC Project Manager

Mark Wareing AEA Technology

Keith Rule Mike Viola PPPL Rob Rose Sue Madaris FIU-HCET

Nicholas Jenkins Bluegrass Concrete Cutting, Inc.

Project Purpose

- Determine if existing diamond wire cutting methods and technology are suitable for cutting a surrogate section of the TFTR vacuum vessel.
- Determine if existing diamond wire cutting methods and technology are suitable for cutting other stainless steel devices that require D&D.
- Optimize the cooling methods.
 - Air emissions
 - waste generation
 - wire performance
- Optimize the void filling materials.
 - Shipping weight
 - stabilization of radionuclides
 - wire performance

Scope

Four surrogates of TFTR vacuum vessel filled with:

Foam, low-density concrete, concrete, empty

- Using a new diamond wire, cut each surrogate using water cooling.
- Select the "best" void filler and cut this surrogate twice, using liquid nitrogen and air cooling.
- Select "best" cooling media and cut surrogate to completion.

Technical Approach

- Fabricate VV surrogates, 90" in diameter using 1/2" 304 SS.
- Fabricate and install VV internals.
 - 1/2" and 5/8" thick 718 PH inconel
 - 1" thick 304 stainless steel
 - 1.5 " thick graphite tiles
- Fabricate support structure
- Fill three surrogates with selected void fillers
- Establish contamination controls for each method (gas and water)
- Perform demonstration using "wraparound" method.

Schedule

- Test Plan Development Draft 3/3/99, Final 5/24/99
- Procure vendor for DWC BCCI awarded contract 3/15/99
- Design and construct surrogates
 - Design completed 4/9/99
 - Fabrication in progress 50% complete. Due- 6/18/99
- Fill surrogates with void fillers 6/25/99
- Perform Demonstration 7/26/99 8/6/99
- Prepare ITSR 8/9/99 to 9/20/99
- Issue final report to DOE 10/29/99

Applicability to Others

PPPL: Vacuum pumping ducts

DOE - SRS heat exchangers, glove boxes

Test Reactors: Reactor vessels

Commercial reactors: Reactor vessels, Steam generators, pressure vessels

Benefits over Baseline

Baseline - Plasma arc cutting, combined with remote disassembly.

- * Significant air emissions radiological and N2O
- * Bubble suits for VV entry and/or remote handling (costly) to remove VV internals
- * Limited ability to control tritium emissions

Diamond Wire cutting-

- * Reduced emissions no N2O, radionuclides only in cut location
- * No need to remove VV internals
- * Void filler stabilizes radionuclides, provides shielding, and provides structural stability during cutting
- * Reduced personnel exposure remote operation, no entry
- * Reduced cost 2 million versus expected cost of \$400K
- * Places VV in preferred waste form for burial

Cost Evaluation Criteria

- Mobilization -
 - Equipment set-up, tenting, ventilation, cooling media, void filling
 - Utilities, training, transportation, permitting.
- Dismantlement of TFT R Vacuum Vessel -
 - Vendor rate, production rate, consumables and PPE
 - Site labor, site monitoring, and safety costs
- Demobilization -
 - Decontaminate and disassemble equipment, survey, load, and transport
 - Collect consumable items for disposition, disassemble temporary structures
- Waste Management -
 - Treat liquid wastes and dispose of in accordance with burial site requirements
 - Characterize, package and transport solid wastes for disposal

Technical Evaluations

- Effects of Required PPE noise, respiratory, clothing, eye and other as specified.
- Consumption of cooling media and associated air emissions
- Cost and performance of diamond wire
- Cutting rate
- Wire replacement and dimension
- Effects of wrap-around technique
- DWC Equipment performance and specifications
- Secondary waste generation
- Personnel exposure time in area, distance from source, shielding from filler.

Progress

- Void filler specifications In progress, Due 5/28
 - wire performance, structural and stability specs.
- Baseline data for comparison AEA and FIU researching
- Surrogate recovered on-site materials, fabrication is in progress
- Cooling media details in progress
 - water
 - air
 - liquid N2

Demonstration

- Scheduled for July 26 start at PPPL
- Will be performed inside fabrication facility
- No restrictions for facility access
- FIU and PPPL will collect data
- BCCI to perform actual cutting
- Cutting estimated to take 7-8 days

Path Forward

- Fabrication is on schedule
- Procurement of cooling media and void fillers are in progress
- No outstanding technical issues
- Obtaining baseline data is critical
- Vendor awarded additional \$5K to demonstrate proprietary liquid N2 cooling technique
- Teamwork has been key to current progress

